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Abstract

With the rapid development of Large Language
Models(LLMs), these technologies are now ex-
tensively utilized across a variety of natural
language processing applications. On the other
hand, the vast number of parameters results in
significant computational costs and resource
usage. To achieve more efficient model infer-
ence, methods such as pruning are employed to
capitalize on model sparsity and decrease com-
putational demands during the inference pro-
cess. However, previous pruning approaches
typically face one major problem which is the
restriction to the inference scenario with batch
size of one. To address this issue, we have de-
veloped a new method, Herd, which leverages
contextual sparsity similarity across inputs to
group data into batches and dynamically se-
lects activation parameters for pruning during
batch inference. Experiments show that Herd
not only maintains the performance of the orig-
inal model but also significantly improves in-
ference efficiency. From a downstream perfor-
mance perspective, Herd mitigates the degra-
dation typically observed in batch inference
with dynamic pruning. Simultaneously, Herd
enables efficient batch inference and achieves
multi-fold improvements in throughput.

1 Introduction

Large Language Models (LLMs) have had a sig-
nificant impact on a wide range of natural lan-
guage processing domains and applications. How-
ever, with billions of parameters, the inference of
LLMs typically requires substantial computational
resources and time. Pruning is a simple and ef-
fective way to reduce computational parameters
and time costs. It identifies and removes redundant
parameters from the original model, generating a
pruned model with fewer parameters and higher
computational speed.

Recently, a new method called dynamic pruning
has been introduced (Liu et al., 2023). Dynamic

pruning leverages contextual sparsity, which
refers to a small, input-specific set of parameters
that can approximate the output of the original
model. Contextual sparsity is a widely observed
phenomenon in modern LLMs and substantial re-
search has focused on developing more effective
dynamic pruning algorithms (Dong et al., 2024;
Lee et al., 2024; Liu et al., 2024). However, a key
limitation of existing methods is their applicability
only in scenarios where the batch size is equal to
one. This restriction arises from the variability in
contextual sparsity across different inputs within
the same batch, which makes it challenging to align
sparsity patterns and efficiently perform dynamic
pruning in larger batch settings.

In batch inference scenarios, different input data
within the same batch may require distinct sets of
activated parameters during dynamic pruning infer-
ence. There are two primary approaches to address
this mismatch of contextual sparsity among data
in the same batch. The first approach is the Union
strategy, which combines the sets of activated pa-
rameters for all data in the batch to meet the require-
ments of every input. However, result in Appendix
B shows that this strategy significantly reduces the
sparsity ratio, leading to limited speedup potential
in dynamic pruning.

The second approach is Eviction, where all data
in the batch share the same set of activated param-
eters under a fixed pruning ratio. In this scenario,
each input sacrifices accuracy because of poten-
tially missing essential parameters. While eviction
provides a feasible solution for dynamic pruning
in batch inference scenario, it risks performance
degradation compared to dynamic pruning with
single input because the correct parameters may
not always be available. Figure 1 highlights the
performance degradation caused by this mismatch,
showing that batch inference experiences signifi-
cantly worse downstream performance with ran-
domly grouped data batch.



Figure 1: Downstream performance comparison of various inference strategies. The black dashed line indicates the
performance of the model without pruning. The green line shows the performance of Dynamic Pruning with batch
size = 1. The orange line shows the performance of Dynamic Pruning in a batch inference scenario with randomly
grouped batches. The blue line shows the performance of the Herd strategy, which applies CSPs to group data with
higher contextual sparsity similarity prior to dynamic pruning.

Previous work (Liu et al., 2023, 2024) intro-
duced the high-level concept that in dynamic prun-
ing, grouping data with similar activated parame-
ters via an eviction strategy can reduce conflicts
and ensure that each input achieves the expected
activated parameters to the greatest extent possi-
ble. This oracle solution minimizes performance
degradation in batch inference scenarios. We define
this phenomenon as sparsity similarity between
data. However, sparsity similarity can only be de-
tected or verified after inference is completed, mak-
ing it impractical for achieving real-time inference
speedups. Therefore, a critical problem is:

how to detect data with high sparsity similarity
as early as possible and group them to perform
batch inference?

To address this problem, we introduced Herd,
an algorithm designed for batch inference with dy-
namic pruning. Specifically, there are two main
challenges Herd solves:

How to detect data with high sparsity similarity
as early as possible: Herd introduces contextual
sparsity similarity, which can be detected dur-
ing the pre-filling stage and represents the spar-
sity similarity between data samples. To achieve
this, we define the contextual sparsity pattern

(CSP)—a bitwise vector that identifies the parame-
ters most likely to be activated in a Feed Forward
(FF) block. The CSP is generated during the pre-
filling stage of LLM inference, providing a preview
of the most frequently activated parameters for sub-
sequent dynamic pruning. The similarity between
CSPs across different data samples indicates the
contextual sparsity similarity within a given FF
block. Moreover, while CSP is inherently tied to
individual FF blocks, a key observation reveals that
the similarity of CSPs persists consistently across
layers in the Transformer architecture (Vaswani
et al., 2023). This cross-layer consistency enables
grouping of data using CSPs collected only during
the first stage, significantly reducing both computa-
tional overhead and storage requirements.

How to perform dynamic pruning after batch group-
ing: In the context of batch inference, experiments
demonstrate that normalization at the batch level
is both straightforward and effective. A simple
adjustment allows previously established dynamic
pruning methods to be applied in batch inference
scenarios.

By addressing these two challenges, Herd en-
ables batch inference with dynamic pruning. The
contribution of Herd includes:

• Novelty: To the best of our knowledge, Herd



is the first approach to explore the batch infer-
ence scenario for dynamic pruning.

• Simplicity: Herd is training-free and cost-
efficient, requiring minimal external opera-
tions that are both straightforward and low in
time complexity.

• Performance: As shown in Figure 1, Herd
effectively mitigates the degradation caused
by parameter eviction during batch inference.
Experiments demonstrate that our algorithm
significantly improves inference throughput
in both on-device and offloading scenarios.

• Compatibility: Herd is compatible with most
dynamic pruning algorithms including Grif-
fin (Dong et al., 2024) and CATS (Lee et al.,
2024).

2 Problem Definition

In this section we formally define the dynamic prun-
ing problem using mathematical notation.

In the architecture of a transformer, a single
transformer layer comprises an Attention block and
a Feed Forward block (FF block). Dynamic prun-
ing is typically applied to the Feed Forward block
as it contains more parameters and exhibits higher
sparsity compared to the Attention block. Presently,
the prevalent trend in most popular models involves
the adoption of Gated Mechanism within the FF
block, which can be defined as:

H = (σ(XWgate) · (XWup))Wdown

where X ∈ RB×Seq×DH denotes the input of
Feed Forward block, σ denotes the activation func-
tion, Wgate ∈ RDH×DI , Wup ∈ RDH×DI and
Wdown ∈ RDI×DH denotes the model parame-
ters of FF block. B, Seq, DH and DI represents
batch size, sequence length, hidden states size and
intermediate size respectively.

Typically, the goal of dynamic pruning is to slice
parameters along the DI dimension. Given spe-
cific input X the objective is to identify a subset
of activated parameter indices J . Each element
j ∈ J indicates that the j-th row or column of the
matrix W in the dimension of DI should not be
pruned. Most of recent dynamic pruning method
is magnitude-based pruning which operates under
the assumption that parameters with higher rela-
tive magnitudes are more critical to the model’s
performance.

3 Observation

In this section, we introduce two key observations
that inform the design of Herd. In Section 3.1,
we revisit a previous observation indicating that
activated neurons during dynamic pruning can be
estimated after the pre-filling stage. Based on this
insight, we propose the Contextual Sparsity Pat-
tern (CSP) to represent inherent contextual sparsity.
Section 3.2 highlights the consistency of CSP simi-
larity across layers, suggesting that calculating CSP
similarity for a single FF block provides a reliable
indication of similarity in other blocks due to this
observed consistency.

3.1 Contextual Sparsity Pattern

Recent work (Dong et al., 2024) makes a key ob-
servation showing that neurons producing high rel-
ative magnitudes are naturally shared across tokens
within a sequence. Due to the alignment in the se-
quence level, the set of activate parameters J can
be determined in the pre-filling stage and applied
along the decoding stage.

We are interested in this phenomenon as the set
of activated parameters J can be viewed as an
inherent representation of contextual sparsity. It
indicates the most likely activated neurons during
the decoding stage. Therefore, when J is highly
similar across data pairs, it is natural to expect that
they will share more parameters and reduce com-
petition when batched together. We introduce the
contextual sparsity pattern (CSP) as the mathemati-
cal representation of J , where CSP is a bit vector:
a value of 1 indicates parameters that are retained,
while 0 represents those that are pruned.

In Herd, the CSP is computed in the pre-filling
stage. Specifically, for a FF block, it is calculated
as follows:

Vdot = σ
(
XWgate) ·XWup

t = Threshold
(∥∥∥∥ Vdot

∥Vdot∥dim=2

∥∥∥∥
dim=1

,R
)

VCSP =

{
mi

∣∣∣∣∣mi =

{
1 if mi > t

0 else

}

X ∈ R1×Seq×DH represents the input prompt,
while R represents the pruning ratio. The output
VCSP is the contextual sparsity pattern, which de-
fines the sparsity pattern of the Feed Forward block
throughout inference for the given input X.



Figure 2: Consistency of similarity in CSP across layers:
Each point in the figure represents a pair of data samples
chosen from the C4 dataset (Raffel et al., 2023). The
X and Y axes correspond to the Jaccard similarity of
the CSP at layers i and j of Meta- Llama-3-8B model
(AI@Meta, 2024), respectively. For pairs of data that
exhibit high Jaccard similarity at one layer, there tends
to be a linear correlation in the similarity between these
pairs across other layers. The sparsity ratioR to retrieve
CSPs is 0.5.

However, CSP is calculated only for one FF
block and high similarity in CSPs of input data
can only indicate that these data points are likely
to share the same parameters for this specific FF
block during decoding steps. After this layer, data
would typically need to be regrouped based on
the CSPs of the next layer, making it challenging
to achieve speedup during inference. Fortunately,
we observed consistency in CSP similarity across
layers, allowing us to avoid such regrouping and
streamline the process further.

Since CSPs are represented as bit vectors, we use
the Jaccard similarity (Real and Vargas, 1996) to
quantify the similarity between two patterns. Fig-
ure 2 demonstrates a clear linear relationship in the
Jaccard similarity across different layers, especially
in the region with higher Jaccard similarity. Fig-
ure 3 illustrates the correlation coefficient of CSPs’
Jaccard similarity between consecutive layers. The
consistently high values across all layers indicate
a strong linear relationship and suggest that the
similarity of CSPs remains highly consistent as the
layers progress. This indicates that if data exhibits
higher similarity at a certain layer, it is highly likely
to maintain higher similarity in other layers as well.

3.2 Consistency of CSP similarity
The consistency of CSPs provides significant ad-
vantages for the Herd design. Firstly, it ensures

Figure 3: The correlation coefficient of CSPs’ Jaccard
similarity between consecutive layers. The sparsity ratio
R to retrieve CSPs is 0.5.

that the contextual similarity among data remains
consistent across blocks and layers. This means
that when data with high similarity in a particu-
lar FF block are grouped together, the benefit of
sharing similar parameters extends throughout the
entire model. Secondly, rather than collecting CSPs
from every layer, we can rely on the CSP from the
first layer to represent the input’s overall contextual
similarity, thereby significantly reducing computa-
tional time and storage requirements.

4 Herd

In this section, we introduce our algorithm and
system design, Herd. In section 3.1 and section
3.2, we introduce two main parts of Herd. In the
batch grouping section, Herd collect the CSPs of
data from the first FF block and use them to group
data with high CSP similarity. In the batch dy-
namic pruning section, Herd performs the modified
Griffin and CATS algorithm designed for batch in-
ference. In section 3.3, we provide the overview of
whole Herd design.

4.1 Batch Grouping

Based on previous observation, we define the con-
textual sparsity similarity as the Jaccard similarity
between the CSPs of the data generated from the
first FF block. For a given input pool, the CSP
is calculated for each input at the first FF block
of transformer structure. With the collected CSPs
we further apply the K-means algorithm to group
data with higher CSP similarity. Based on previous
discussion, inputs within the same cluster exhibit
higher contextual sparsity similarity and are more
likely to share parameters during inference. After
the cluster is grouped, we batch the input data from
the same cluster for further inference.



Figure 4: Overview of Herd: Herd consists of two primary stages. In the batch-grouping stage, the CSP is computed
for each request, and data with higher similarity in CSPs are grouped into the same batch. In the dynamic pruning
stage, Herd leverages adaptive pruning method (e.g. Griffin and CATS) to perform dynamic pruning across multiple
batches, optimizing the inference process in a batch inference scenario.

4.2 Batch Dynamic Pruning

After the batch is grouped, we perform batch dy-
namic inference during the decoding stage. Herd
adapts the algorithms from the two most recent
and best-performing methods, Griffin and CATS,
for dynamic pruning. Specifically, Griffin uses the
CSP extracted from the pre-filling stage to deter-
mine which parameters are retained and which are
pruned then applies it during the decoding stage.
In contrast, CATS treats the output of the gate pro-
jection in the FF block as a routing mechanism to
identify which parameters are most important. It
applies a threshold TR on the output of gate projec-
tion to decide which parameters to prune.

In the batch inference scenario, the primary dif-
ference is that the input shape during the decod-
ing stage changes from R1×1×DH to RB×1×DH .
Therefore, determining the set of activated param-
eters for the entire batch becomes important. Our
experiments show that applying a simple L1 norm
along the B-dimension performs effectively. The
absolute value of the magnitude can be interpreted
as a measure of confidence for retaining parame-
ters, with higher values being more likely to be
preserved. Appendix C illustrates the details of
the two dynamic pruning methods. The operations
highlighted in red represent the key modifications
necessary for their application in batch inference.

Algorithm 1 Herd Algorithm

1: Input: Data pool D, Model M , Number of
clusters C, Batch size B

2: Output: Decoded output from model M
3: Step 1: Batch Grouping
4: for each data point d in D do
5: collect CSP from Feed Forward Block 0 of

M for d
6: end for
7: Clusters Ĉ ← KMeans(CSPs, C)
8: Step 2: Generation
9: for each cluster Ci in Clusters do

10: Batches B̂ ← GroupIntoBatches(Ci, B)
11: for each batch B in B̂ do
12: Perform prefilling on B
13: Decode B with Griffin or CATS
14: end for
15: end for

Comparatively, Griffin employs a fixed dynamic
pruning pattern based on the CSP, which allows it
to prune more parameters overall by pruning across
Wgate,Wup, and Wdown with a fixed pruning ratio.
In contrast, CATS prunes only Wup and Wdown,
but it dynamically selects the most appropriate pa-
rameters at each decoding step, leading to better
downstream performance.



mode/R Xsum CNN-Dailymail CoQA ClosebookQA

Rouge-2 Conv Rouge-2 Conv EM F1 EM F1

baseline 10.89 76.38 13.47 89.78 72.30 81.52 34.70 42.62

S/30% 10.43 74.50 13.41 87.72 71.60 80.83 34.10 41.94
S/40% 10.25 72.98 13.27 87.23 71.10 79.62 33.50 40.82
S/50% 9.97 71.24 13.03 86.81 70.80 78.19 31.90 39.28
S/60% 9.76 69.86 12.90 86.39 69.40 76.74 30.10 38.65
S/70% 9.50 68.12 12.22 84.96 67.70 75.88 26.90 36.74

R/30% 10.22 72.96 13.29 87.63 70.25 80.01 31.25 38.56
R/40% 9.71 63.13 13.01 86.63 67.65 77.58 28.55 36.87
R/50% 8.15 56.86 12.46 85.38 65.15 75.20 25.10 34.14
R/60% 5.59 40.67 11.92 84.67 63.95 75.12 20.50 30.72
R/70% 3.76 31.00 11.01 81.53 59.50 71.38 15.60 25.99

H/30% 10.41 71.64 13.38 87.43 70.90 80.56 32.70 40.14
H/40% 10.06 70.01 13.26 86.80 69.40 78.66 31.50 39.11
H/50% 9.52 68.82 12.84 86.27 67.90 76.80 30.70 39.05
H/60% 9.37 67.53 12.31 85.79 66.60 75.84 27.80 36.82
H/70% 8.66 65.98 11.88 83.91 65.30 73.42 24.30 33.41

Table 1: The result of In-context generation category tasks on Llama3-8B. The inference mode S, R and H is
mentioned in section 5.2 andR represents the pruning ratio. The pruning algorithm is Griffin.

4.3 Overview
Based on the discussion above, we introduce Herd,
a system designed for batch inference with dynamic
pruning for LLM generation. Figure 4 and algo-
rithm 1 illustrates the overview of Herd. The input
data pool will be grouped with calculated CSPs
from first FF block and then perform batch dy-
namic pruning algorithm to get the final outcome.

5 Downstream Task Evaluation

In this section, we perform multi-topic tasks to
demonstrate the downstream performance improve-
ments achieved by Herd in the scenario of batch
inference.

5.1 Task Selection
Since Herd is applied during the generation stage,
the downstream tasks we have chosen are mainly
related to the evaluation of natural language gener-
ation. These tasks can be broadly divided into two
categories:
In-context Learning Generation: These tasks in-
volve generating answers or summaries based on a
provided long context and are generally easier and
more robust to the effects of pruning. The tasks in
this category include Xsum (Narayan et al., 2018),
CNN-Dailymail (See et al., 2017), CoQA (Reddy

et al., 2019) and Natural QA(closebook version)
(Kwiatkowski et al., 2019).
Instruction-based Generation: These tasks in-
volve solving realistic problems such as code gen-
eration which are generally more difficult and less
robust to pruning. The tasks we selected for this
category include Gsm8k (Cobbe et al., 2021), Hu-
manEval (Chen et al., 2021) and IFEval (Zeng et al.,
2024).

Details are shown in Table 3 and 4.

5.2 Experiment Setup and Procedure

To show the performance improvement provided by
Herd, we mixed the input request of the same task
category into one request pool and apply different
inference modes for text generation.
• Single-batch inference(S): The inference of this

mode is under the condition of batch size = 1.

• Batch inference with random grouping(R): The
inference of this mode is under the condition of
batch size > 1. It does not apply Batch Grouping
approach and randomly select the requests of the
same task category to form a batch.

• Herd(H): The inference of this mode is under
the condition of batch size > 1.

The detail of experiment setup is in Appendix D.



Model Type Llama3-8B-Inst Llama3-70B-Inst

mode/R Gsm8k HumanEval IFEval Gsm8k HumanEval IFEval

EM Pass@1 I-acc EM Pass@1 I-acc

baseline 78.60 61.30 75.24 89.80 78.13 84.29

S/30% 77.34 56.25 75.14 89.80 75.00 83.01
S/40% 77.34 56.25 73.12 89.80 74.22 84.22
S/50% 70.10 48.43 71.84 89.06 73.40 82.91
S/60% 66.41 43.75 70.96 87.50 71.87 81.92
S/70% 57.03 20.31 70.66 87.50 65.00 81.44

R/30% 75.39 50.78 73.22 89.06 73.81 81.34
R/40% 60.15 43.35 70.98 88.23 71.09 80.25
R/50% 53.13 39.84 68.79 87.50 70.70 78.62
R/60% 45.31 25.39 64.27 85.54 67.18 79.12
R/70% 40.62 16.40 60.20 84.37 61.32 75.77

H/30% 75.78 53.13 71.35 89.80 75.00 82.94
H/40% 65.63 47.65 70.87 88.23 72.65 82.65
H/50% 67.19 42.97 70.38 87.50 71.09 81.75
H/60% 57.81 28.90 69.90 86.72 67.96 80.24
H/70% 38.28 18.75 68.44 84.38 63.28 79.10

Table 2: The result of Instruction-based generation category tasks on Llama3-8B-Instruction and Llama3-70B-
Instruction. The inference mode S, R and H is mentioned in section 5.2 and andR represents the pruning ratio.
P-acc represents prompt level strict accuracy metric in IFEval evaluation. The pruning algorithm is CATS.

Task Shot Type
Xsum 3 Summarization

CNN-Dailymail 3 Summarization
CoQA 0 Question Answer

Natural QA 3 Question Answer

Table 3: In-context Learning Generation Tasks List

Task Shot Type
Gsm8k 8 Math

HumanEval 0 Code
IFEval 0 Instruction

Table 4: Instruction-based Generation Tasks List

5.3 Experiment Performance

Table 1 and table 2 shows the downstream per-
formance comparison of single-batch inference S,
multi-batch inference with random grouping R and
Herd H . The results of our experiments demon-
strate that with batch grouping, Herd achieves sig-
nificantly better downstream performance than the
baseline batch inference mode. In most tasks, when
the sparsity ratio less than 50%, Herd’s perfor-
mance is comparable to that of single input infer-

ence, and even approaches the performance of the
original LLM.

6 Efficiency Experiment

In this section we are going to introduce the bench-
mark experiment and shows the efficiency improve-
ment of Herd. In section 6.1, we present the de-
coding latency using different dynamic pruning
algorithms within Herd. In section 6.2, we conduct
an end-to-end benchmark test and analyze the time
consumption of each component in Herd.

6.1 Latency Benchmark
The application scenario for Herd is mainly con-
sidered in the on-device inference and offloading
inference. For the on-device inference, model’s
parameters are completely loaded in the GPU de-
vice and Herd primarily aims to reduce the time
required to loading parameters from GPU to ten-
sor kernel as well as the computation time. For
the offloading inference, the hardware resource(e.g.
GPU memory) is limited thus the whole model
can not be loaded once. Instead, GPU needs to
frequently swap parameters with DRAMs and the
loading of parameters is the main bottleneck. Nat-



Figure 5: Latency benchmark result for on device sce-
nario with CATS(top) and offloading scenario with Grif-
fin(bottom)

urally, Herd allows less parameter loading of FF
block during inference stage thus can bring higher
benchmark performance.

Figure 5 presents the benchmark performance
comparison between the on-device and offloading
scenarios for the Meta- Llama-3-8B (AI@Meta,
2024) model. While higher sparsity naturally leads
to reduced latency in both scenarios, Herd primarily
contributes to throughput improvement. Through
effective batch grouping, Herd enables multi-fold
increases in the throughput of dynamic pruning
inference. The experiment setup is in Appendix D.

6.2 End to End Benchmark

We conducted an end-to-end experiment using a
fixed input data pool and benchmarked the total
processing time across various scenarios. Figure
6 presents a detailed time breakdown of different
processing stages. Notably, the overhead associ-
ated with generating CSPs and performing KMeans
clustering is negligible compared to the time spent
on LLM inference, particularly the decoding stage.
The proposed Herd method enables batch infer-
ence, resulting in significantly improved through-

Figure 6: Time breakdown of different scenarios under
a fixed request pool with 200 requests. Each request has
the input length of 1024 and generation steps of 128.
Original refers to no pruning, with -1 and -4 indicating
batch sizes of 1 and 4, respectively. We use CATS as dy-
namic pruning algorithm. The processing time is decom-
posed into four components: CSP Generation, KMeans
clustering, Pre-filling, and LLM Decoding. The sparsity
ratio is 0.5. The experiment is performed on A6000
GPU.

put while maintaining the efficiency of the dynamic
pruning algorithm.

7 Conclusion

In this paper, we proposed Herd, a novel dynamic
pruning method for efficient LLM inference. By
wisely grouping data with contextual sparsity pat-
tern, Herd can batch data with similar contextual
sparsity thus reduce the parameter competition and
alleviate the degradation of downstream perfor-
mance.

Limitation

In this section we will discuss the limitation of
Herd design.

• Lack of kernel optimization Recently, many
frameworks have achieved significantly better
inference latency through compiler optimiza-
tions and specialized kernel designs. However,
these implementations are primarily designed
for dense models and such optimizations cannot
be directly applied in dynamic pruning scenar-
ios. For instance, while tools like Torch Compile
(Ansel et al., 2024) provide substantial inference
speedups, they lack the flexibility needed for di-
verse and dynamic pruning operations, making
them unsuitable for this use case.

Due to the lack of mature support from com-
pilers and kernel designs, some of the previous
dynamic pruning algorithm like CATS does not
support the introduction of torch compile. Con-
sequently, it is unable to compare benchmark per-
formance directly with popular inference frame-



works such as vLLM (Kwon et al., 2023) or
SGLang (Zheng et al., 2024), which benefit from
advanced optimizations. Unfortunately, Herd
does not provide a solution to this challenge and
continues to face the same issue. Addressing this
limitation will require further kernel optimiza-
tions specifically tailored for dynamic pruning.

• Challenges in Adapting to Online Service Ap-
plications In our discussion of Herd, the scenario
aligns more closely with offline inference rather
than online inference. In an online service ap-
plication, numerous variables must be taken into
account. For example, the size of the request
pool before performing CSP calculations and
batch grouping is a critical factor. If the pool
size is too large, the time required to fill the pool
increases, leading to higher service latency. Con-
versely, if the pool size is too small, the benefits
gained from Herd become uncertain. Therefore,
applying our system design to real-world online
service applications requires further exploration
of system trade-offs.

• Constraints of pruning format Although most
of the dynamic pruning algorithm is performed
as we described in section 2, some new work
propose new dynamic pruning format. For exam-
ple, in Liu et al. (2024)’s work, TEAL introduce
the activation-based dynamic pruning and per-
form it on both attention block and FF block.
Our experiment shows that due to the mismatch
of problem definition, Herd is not compatible
with TEAL and results in similar outcome with
random grouped batch.

Ethics Statement

Potential Risks
As an algorithm towards efficient inference, we
introduced dynamic pruning to approximate the
output of original model. Such approximation can
potentially bring risks since it is not the original
LLMs and it is unpredictable for its behavior.

Use of Scientific Artifacts
We utilize the evaluation platform such as lm-
evaluation-harness and helm under the licence of
MIT License and Apache License 2.0 respectively.

Model Size, Budget and Hyperparameters
In the Appendix D the details of model size and the
amount of experiment data are listed. The budget

of experiment is decided by the hardware usage.

Ai Assistants In Research Or Writing
We do use the Ai Assistants like ChatGPT for paper
polishment.
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A Related Work

A.1 Static Pruning

Several classic neural network compression tech-
niques, including pruning (Han et al., 2015), distil-
lation (Hinton et al., 2015) and quantization (Han
et al., 2016), have been demonstrated to be use-
ful across various domains of machine learning.
Among these methods static pruning is proved to
be an effective neural network compression method
for efficient LLMs inference. In the LLMs field,
there are several works to do the static pruning
based on hessian estimation (Frantar and Alistarh,
2023), weights and activations (Sun et al., 2024),
grouping parameters (Ma et al., 2023) and sliced
parameters (Ashkboos et al., 2024).

A.2 Dynamic Pruning

Compared with static pruning, dynamic pruning
does not eliminate parameters permanently. In-
stead, it predicts activate neurons based on the cur-
rent input and prunes certain parameters. Deja Vu
(Liu et al., 2023) was the first attempt in this field
and achieved success with the OPT (Zhang et al.,
2022) and Bloom (Workshop et al., 2023) models.
In the LLMs field, some works (Song et al., 2023)
successfully leverage the feature of ReLU activa-
tion function and achieve near-lossless results in
the downstream tasks. However, most of the popu-
lar models such as GPT (Brown et al., 2020) and
Llama (AI@Meta, 2024) do not adapt with ReLU
activation function but with more complicated acti-
vation functions like GELU (Hendrycks and Gim-
pel, 2023) and SiLU (Elfwing et al., 2017). There
are main two ways to apply dynamic pruning on
these models. The first one is ReLUfication which
introduces a new ReLU-based model through re-
training original model (Zhang et al., 2024; Song
et al., 2024). The second method is magnitude-
based pruning, which assumes that calculations
corresponding to low-magnitude normalized val-
ues in the output can be removed (Dong et al., 2024;
Lee et al., 2024; Liu et al., 2024).

B Union Strategy for batch inference

Figure 7 illustrates the dramatic decline in sparsity
with the union strategy, showing that it severely
undermines the efficiency of dynamic pruning.

Figure 7: Union of contextual sparsity with batch in-
ference. The experiment is conducted using the Meta-
Llama-3-8B (AI@Meta, 2024) model during the infer-
ence phase on the ShareGPT dataset. For each data in
the batch sparsity ratio = 50%

C Algorithm of Dynamic Pruning for
Herd

Algorithm 2 CATS Algorithm

1: Input: threshold t, hidden state x, weights
Wgate, Wdown, and Wup

2: v ← SiLU(xWgate)
3: v ← ∥v∥1
4: Mask← 1 if |v| ≥ t else 0
5: x1 ← (xWup[Mask] ∗ v[Mask])
6: y ← x1Wdown[Mask]

Algorithm 3 Griffin Algorithm

1: Input: sparsity ratio R, prompt hidden state
xp, hidden state x, weights Wgate, Wdown, and
Wup

2: Prefilling:
3: v ← SiLU(xpWgate) ∗ xpWup

4: v ← ∥v∥1
5: t← Threshold(|v|,R)
6: Mask← 1 if |v| ≥ t else 0
7: Decoding:
8: x1 ← xWup[Mask] ∗ SiLU(xWgate[Mask])
9: y ← x1Wdown[Mask]

D Experiment Details

D.1 Downstream Task Evaluation Experiment

For the In-context learning generation category, we
applied Meta-Llama-3-8B model with batch size



= 8 during the batch inference. For four differ-
ent tasks, the number of input requests is 1k each.
Additionally, we added 4k input requests from C4
dataset to increase pool’s uncertainty. The cluster
number of Kmeans in the Batch Grouping approach
is set to 10. Since the tasks are relatively easy, we
choose Griffin for downstream generation.

For the Instruction-based generation category,
we applied Meta-Llama-3-8B-Instruct model and
Meta-Llama-3-70B-Instruct model for downstream
testing with batch size = 4 during the multi-batch
inference. The number of input request is equally
128 for different tasks and we also added 128 input
request of Natural QA dataset to increase uncer-
tainty. The cluster number of Kmeans in the Batch
Grouping approach is set to 8. Since the tasks are
relatively hard, we choose CATS for downstream
generation.

For the few-shot request, to make sure the di-
versity of request context, we used different shots
for each request. To evaluate the downstream tasks
performance, we use the existing github repo lm-
evaluation-harness (Gao et al., 2024) and helm
(Liang et al., 2023).

D.2 Efficiency Experiment

For the efficiency experiments, we evaluated the
Llama3-8B model in both on-device and offloading
scenarios for generation tasks. In the on-device
scenario, we conducted the benchmark using CATS
as the backend dynamic pruning algorithm, running
on a single NVIDIA A6000 GPU. The batch sizes
tested were 1, 2, and 4.

In the offloading scenario, we used Griffin as the
backend dynamic pruning algorithm, but the exper-
iment was performed on a single NVIDIA 2080Ti
GPU. Similarly, the batch sizes tested were 1, 2,
and 4. Figure 8 shows the on device benchmark
of Griffin. We do not show the offloading bench-
mark of CATS since it is heavily influenced by cpu
function.

E Ablation Study

We compare the clustering outcomes based on the
CSPs of different layers. To evaluate the similarity
between these outcomes, we utilize the Adjusted
Rand Index (ARI) as the metric. ARI ranges from
-1 to 1, where higher values indicate greater agree-
ment between clustering results. Furthermore, re-
cent research suggests that the first layer of large
language models (LLMs) typically functions as

Figure 8: Griffin On device benchmark

an interpreter of low-level and lexical information.
Therefore, we also compare the K-means cluster-
ing results with those obtained from a semantic
representation. In this analysis, we use the bge-
large-en(Xiao et al., 2023) model as a sentence
embedding model to quantify the semantic mean-
ing of the input.

L8 L16 L24 L32 Semantic
ARI 0.64 0.57 0.53 0.54 0.79

Table 5: ARI between Kmeans outcome with CSP of
layer 1(L1) and other Kmeans clustering outcome. Li

represents the Kmeans clustering with CSP of layer i
and Sematic represents the clustering outcome with sen-
tence embedding model. The experiment is performed
on ShareGPT dataset with Meta-Llama-3-8B

Table 5 presents the ARI metrics for different
clustering outcomes. The results show that cluster-
ing outcomes based on CSPs from different layers
consistently achieve ARI values above 0.5, indi-
cating a strong agreement. This provides evidence
of alignment in CSPs across layers. Notably, we
observe that the ARI between the clustering out-
comes based on CSPs and those based on semantic
embeddings is remarkably high, suggesting that
the similarity in contextual sparsity corresponds
closely to how humans understand topics. This
finding indicates that LLMs activate expert neu-
rons aligned with human topic understanding, even
in models that are not explicitly trained as mixtures
of experts (MoE).

F Results for Consistency of CSP
similarity across Layers

Here we provide more results to show the consis-
tency of similarity in CSPs across layers:



a: Subfigure 1 b: Subfigure 2 c: Subfigure 3

d: Subfigure 4 e: Subfigure 5 f: Subfigure 6

Figure 9: An overview of the results. Each subfigure highlights different aspects of the experiment.
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